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The Magic Cube Puzzle (known variously as Rubik's Cube,
the Hungarian Cube, Blvds Kocka, damn thing, etc.) was designed
by Ernd Rubik, a professor of architecture in Budapest, Hﬁngary,
This diabolically difficult device has received a surprising
amount of public attention ~ speed competitions are mentioned on
TV news programs, a national newsmagazine used it on its cover to
symbelize the intricacies of the world situation, and a 13 year-old
explained on a TV talk show why adults have greater difficulty with
the puzzle. The literature on the Magic Cube includes a book
giving an introduction to group theo:v via the Cube ([17]), and a
great number of solution manuals and compendiums of useful moves
(e.g. [11, 8], [51, [11], [151).

The Magic Cube has attracted considerable attention in the
mathematical community not only becaﬁée';t is an attractive and
difficult geometrical puzzle but also because it is susceptible to
mathematical investigation. The totality of all reachable
configurations can be identified with a large finite group;
indeed one could choose to regard the Cube as a remarkably compact
and efficient presentation of an interesting group.

This perspective on the Magic Cube is only indirectly
relevant to the problem of finding a solution to the puzzle, but

ifidgqs illuminate many aspects of the device. For instance,



it leads to an understanding of *reachahle" and "unreachable®”
configurationé. The total number of reachable configqurations is
equal to the order of the group. It turns out that only 1/12 of
all coﬁfigurations are reachable - if one disassembles and then
reassembles a Magic Cube at random the probability that it can then
be solved is only 1/12. In addition this group-theoretic analysis
‘sheds some light (e.g. [18]) on the intriguing and very difficult
unsolved problem of finding the smallest integer N such that any
configuratiohlcan be solved in at mo;t N-movés {this integer is
sometimes called the length of God's algorithm).

The priméry goal of this paper is to study the group theory
in more general versions of this kind of geometrical transformation
group. Several variants of the Magic Cube have appeared, some
based on different underlying polyedra. However, our primary
example is a puzzle that hasn't appeared in the stores yet: an
n-dimensional cube puzzle. We will explicitly determine the group
of this object as a subgroup of a certain "wreath product” and
thereby determine the number of configurations obtainable and
determine the constraints satisfied by reachable configurations.
The case n = 4 has been treated in some detail in [7].

The first section of this paper reviews some facts about
imprimitive permutation groups and certain wreath products; this
section can be useﬁ for reference. The next section contains a -
reasonably down-to-earth discussion of the group of the usual
3-dimensional cube. This yields certain constraints that reachable
configurations must satisfy. By using some elementary facts from

group theory we show that all configurations that satisfy these
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conditions are in fact reachable; this is done without exhibiting
a solution algorithm. The fourth section describes a very general
construction of a geometrical transformation group associated to
arrangements of hyperplanes in B"; this seems to encompass all
known generalizations of the Magic Cube.- The rest of the paper
contains a detailed analysis of the casé of an n-dimensional cube;
the basic definitions and theorems follow the pattern of the

3-dimensional cube in a natural way. -

1. Imprimitive permutationAggpups. Suppose that Y is a finite

set and that = is an equivalence relation on Y. A bijection

f:¥Y » Y is said to preserve the equivalence relation if
Y1 £ ¥, implies that f(yl) = f(yzl
for all Yir ¥y in Y. Note that f then determines a well-defined
permutation on the set of equivalence classes.
A permutation group on Y is a subgroup of the group Sym(Y)

of all permutations (bijections) on Y. A permutation group

G CC Sym(Y) is said to be imprimitive if each element of G

preserves a given nontrivial equivalence relation. (An eguivalence
relation on a set is trivial if all elements in the set are
equivalent or no two distinct elements of the set are equivalent.}

Such an equivalence relation is sometimes called a G-congruence.

Example: Let G be the group (of order 8) or symmetries of the squar:
We can think of G as a permutation group on the set Y of 4 vertices
of the square. Each element of G preserves the equivalence relation

"being on diagonally opposite corners® on Y; there are two



equivalence classes each containing two elements.

Pix a nontrivial equivé;enée relation = on the finite set
Y. Let X denote the set of equivalence classes. If G {_ Sym(Y)
preserves = then by the observation above we get a well-defined
homomorphism a:G = Sym(X). The kernel is contained in the group
- of permutations that fix each equivalénce class as a set but
permute elements within each class.

To simplify the discussion we will assume that each
equivalence class x € X contains m elements. If Chax & Sym(Y)
denotes the maximal permutation group on Y that preserves =
then the situation can be ﬁicely summarized in the language of
group theory by saying that there is an exact seguence:

a
-

1 > I Sym(x) + G Sym(X) > 1 .

xeX S )
Since each class x has m elements the.group Sym(x) is isomorphic
(non-canonically) to the usual symmetric group Spe  To make this
completely explicit let m denote {1, 2, .- , m} and choose a
bijection f :x » m. The map that takes a permutation s e Sym(x)

on the class x to fxosof;l e 8 = Sym{m) is an isomorphism.

Lemma 1: There is a homomorphism B:Sym(X) -+ leax Quch that
xef is the identity map.

Proof: For each x in X choose a numbe:ing £ ix * m as above. .
(One could regard the collection of all of these numberings as a

bijection f:Y + Xxm .} If y is in the equivalence class x and

s € Sym(X) then define 8(s) € Sym(¥} by the formulq;

B(s) (y) = £, (£, (y)).



In words, this defines B(s) to be the uﬁique permutation on ¥
that preserves =, induces the permutation s on the equivalence
classes X, and takes the i-th elemeﬁt of the class x to the
i-th element of the class sx for 1 < i < m (with respect to the
given numberings). It is easy to check that B{s) preserves Z,
B is a homomorphism, and that d(B(s)) ='s so that the-proof of

‘the lemma is finished.

This lemma says that the exact sequence above splits and

that Gma is then isomorphic to a semidirect product. If X has

X

- n n
n elements then Gmax = (Sm) )‘Sn where (Sm) denotes the product
of n copies of Sh and Sym(X} = S, acts by permuting these copies.
Note that this isomorphism is not canonical; it depends on the

choice of the numbering functions fx'

This group is a complete monomial group which is a special

case of a wreath product. Before giving a general description of

these groups we give an example that will play a prominent role
later in the disucssion of the n-dimensional cube.

Example: Let C = {(xi}E R?: -1 < x; £ 1 for each i} be the
n-cube centered at the origin in real n-space ®". The standard
basis vectors €ys == ; € are the midpoints of the facets

(= n-1-dimensional faces) of the n-cube. A symmetry of C is a
rigid motion of n? that maps C to itself. It is clear that any
symmetry takes e.; to iej for some j. The matrix of such an E
orthogonal transormation must be monomial (i.e. have exactly one
nonzero entry in each row and column) with nonzeroc entries eqgual
to +1. Thus the group of symmetries of C is the group of order

2%n! of n* n monomial matrices with nonzero entries equal to +1.

"The orientation-preserving symmetries form a subgroup of index 2;
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this subgroup contaihns all matrices of determinant +1. The
group of symmetries is sometimes called the hyperoctahedral
group; it is isomorphic to the wreath product (see below)

{#1} ~ s _. It can also be thought of as a permutation group
on the 2n vectors te;. In fact it is the maximal permutation
group on those vectors that preserves the egquivalence relation

"is the negative of".

If G is a'group, X is a set, ané-ﬂ is a permutation group
on X then the wreath product GVvH is defined to be the set of
all pairs'(f,s) where s € H and £f:X » G. Multiplication is defined
by
(£,s) (g,t) = (h,st) where h(x) = f{x)g{sx) .

If H = Sym(X) then this is called a complete monomial group. If
X has n elements so that Sym(X)==Sn then this group can be given

several more concrete interpretations:

1) G'\»Sn ~ the set of all nxXn monomial matrices with nonzero
entries from G; the group operation is induced by
multiplication of matrices and the group operation on G.

2) Gvs = the semidirect product Gniasn with S acting by

permuting the n copies of G.

(We remark that we make all group actions operate on the left so
that, for example, permutations in 5, are multiplied from right;
to left.)

If G' denotes the commutator subgroup of G then the
. abelianization G/G' is an abelian group. Consequently if (f,s)

is an element of the complete monomial group G~ Sym(X) then the

image of the product T f£(x) in G/G' is well-defined (i.e.
xeX
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is independent of the ordering of terms in the product). In
fact it is easy to use the group operation defined above to
check that x(f,s) = [0 £{x)] gives a homomorphism

2 7= g

x:Gﬂoéym(X) > G/G" .

If the complete monomial group is thought of as the group of
n X n monomial matrices then this homomorphism is given by the
image of the product of all nonzero éntries of a matrix. We will

call this map the canonical character of the complete monomial

group.

Now return to the earlier situation: Gmax is a maximal

imprimitive permutation group on a finite set Y in which each of

the equivalence classes x € X has m elements. For all x choose a

numbering f_:x - m. We obtain an isomorphism G _ = S~ Sym(X)

and a canonical character ¥:G

| —
- 5,/5) = Sg/A, = {#1} .

Proposition 1: The map X is independent of the choice of numberings.

Proof: Let g be an element of Cax and let s = a{g) be its image in
Sym(X). By retracing the definition of the isomorphism,Gmax==Smﬁ4$y

we find the the canonical character is the image of the product

-1
1 fsx°g°fx
xeX

in the quotient S _/A = {+1}. Any other numbering on the class x

is of the form OJoe fx where 0 is some element of S . If the numberi
is changed on the class x two terms in the above product are changed
The terms in the product can be reordered at will (since the

image lies in an abelian group) so we put the two terms next to

each other. The o and o~Y then cancel so that the value of the

character x is unchanged. This proves the proposition.



We will call X the canonical character of Gmax' In the
sequel we will also need a slightly more general construction,
although it will be relevant only for the motions of the vertices
of the n-cube.

Say that two numberings £ :x - E and F_:x = ~m of the
m-element set x are eguivalent if ?xof;l is in the altermating
‘group A = Alt(m). An orientation on x is an equivalence class
of numberings. There are two possible orientations on a finite
set. A map g;x + x' of oriented ééts is orientation-preserving
if fxngnf;1 is in A (where f_and f , are chosen from the
orientations in guestion).

Now assume that Y is a finite set equipped with an eguivalence
relation as above for which each equivalence class has m elements.
Assume further that each class x is supplied with an orientation.
Let Ggax denote the maximal permutation grcoup on Y that respects
the given equivalence relation and induces orientation-preserving
maps on the equivalence classes. Thus if g is in G:ax then its
restriction to the elements in the class x gives a map from x to
sx {where s = a(g)) that is orientation-preserving. It is now
possible to repeat the Proposition above in this context and to
obtain a well-defined canonical character X=G$ax > Amfhﬁ that

is independent of any choices.

Remarks:

1) Since Am = A& for m> 4 this map is trivial unless m = 3 or m = 4.
2) This procedure could be applied to any permutation group

H in S, one would define H-equivalent numberings and obtain a

canonical character ¥:G H/B'.

max,H



3) If all orientations on the classes x are reversed it can

be verified that for m = 3 and m = 4 the canonical character

becames'x(g)"l.

4) The proof of the proposition above is reminiscent of the
verification that the transfer homomor?ﬁism in group theory is
well-defined. In fact if H is the subgroup of Grax that fixes

a class x as a set and H, is the subgroup that fixes the elements

of x then it can be verified that thé canonical mp is essentially

the map G > H/HxH' obtained as a quotient of the transfer

max

homomorphism.

2. The 3-cube. The usual 3-dimensional Magic Cube is certainly
one of the few things that deserves the overworked mathematical
adjective "well-known". We briefly recall some of the details
in order to describe the associated finite group.

The Magic Cube appears to consist of a 3x3x 3 array of
smaller colored cubes. The initial, or solved, configuration is
the arrangement in which all 6 sides of the Cube are monochromatic.
Henceforth the small cubes will be called cubelets and their
faces facelets; the position of a cubelet will be called a
cubicle. There are 54 visible colored facelets, 9 on each of
the 6 sides of the Cube.

A move (or generating move, or generator} consists of turning
all 9 cubelets on a side as a block through a half turn (180°)
or a quarter turn (90°) in either direction. A process is a seguenct
of moves. The object of the puzzle is to devise an algorithm that

converts a random configuration {easily obtained by a few unthinking



moves) to the solved configuration by a suitable process.

By a little experimentation one rapidly discovers that no
internal facelets ever appear. In fact there is no middle cubelet.
These facts can be verified by disassembling the device {by prying
off an edge cubelet from a face that is rotated 45°) to reveal

_Professor Rubik's ingenious mechanism. -

Thus there are exactly 26 cubelets and 54 facelets. They
are of three types: the & center cubelets {each with one cclored
facelet), the i2 EQEE cubelets {each Qith-twd colored facelets),
and the 8 corner cubelets (each with three colored facelets]).
Moves, and henée processes, take corner cubelets only to corner
cubicles; similarly for edges and centers.

of the Cube

In order to evaluate the position or configuration/we will
fix the positions of the center cubelets; for instance one could
require that the red center cubelet be on the top, the blue center
on the left, etc. Since experimentation {or an examination of the
underlying mechanism) shows that the relative positions of the

center cubelets are fixed anyway this is no real loss of generality.

A configuration (or position) of the Cube is then any permutation

of the edge and corner facelets that can be obtained by dumping
the corner and edge cubelets ontc a table and then reassembling

the Cube. A reachable configuration is one that can be obtained

by a process (i.e.‘a sequence of moves}). =

Let Yc denote the set of corner facelets, Ye the set of edge
facelets, and Y = Yc{j Y, . The fundamental problem is then the
following:

Describe the group HC Sym(Y) that is generated by moves.

The elements of H correspond to reachable configurations.
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Let G C Sym(Y) be the permutation group on Y consisting
of permutations that can be obtained by the *dump® moves
described above. The group G is substantially smaller than the
group Sym(Y) = 548 of all 48! permutations. In fact elements of
G must satisfy some obvious constraints: corner (resp. edge)
facelets must be faken to corner (resp. edge) facelet positions
(so that G is contained in Sym(Y ) x Sym(Y_}), elements of G must
preserve the equivalience relation of "being on the same cubelet”®,
and, finally, the clockwise order of the three facelets on a cornerx
cubelet must be preserved.

With these remarks it is easy to count the total number of
configurations (i.e. to find the order of G). There are 12! ways
to put the 12 edge cubelets into the adge cubicles and two possible
orientations for each edge cubelet within a given cubicle. There
are 8! ways to rearrange the positions of the corner cubelets and
three possible orientations of a cubelet in a given cubicle. Hence

the total number of configurations is

3881212321 — 519024039203878272000 = 1.5 x 102° .

It turns out that H is a proper subgroup of G. Thus there are
configurations that can be realized by dumping the Cube and
reassembling it that can not be obtained by processes. In fact

H is a subgroup of index 12 in G; only 1/12 of all configurations
are reachable. Thué no matter how furiously vou manipulcie youxr
Cube you will see at most

8 19

38812123121 /12 = 43252003274489856000 = 4.3 x 10

positions. If someone has tampered with your Cube (by dumping

_}éhdomly or by interchanging facelets)} then you may not be able



to even obtain the solved configuration.

The number of reachable configurations is bigger than the
current guess of the age of the universe in seconds. Thus it is
unlikely that you'll see anything but a terribly minute fraction of
these configurations in your lifetime. Moreover most “random"
configurations that you see are probably-being seen for the first
and last time by human eyes. It is amusing to note that the Ideal
Toy Corporation, who first marketed the Cube in this country on ar
large scale, ciaimed»in their promoti;nal-maferial that there were
"more than 3 billion positicons™ of the Cube.

In order fo prove that H is of index 12 in G it is necessary
to analyze the structure of G a little more closely. Let = and

c
=_ denote the equivalence relation "being on the same cubelet™ on

e
the sets Y, and Y_ of corner and edge facelets. The sets xc and

Xs of equivalence classes can of course be identified with the sets
of corner and edge cubes respectively. Oriént-the . three

-facelets on a givenuco;ner;by,saying that a numbering is

correctly oriented if it increases-in a clockwise direction as
viewed from outside the Cube. Let G denote the maximal permutation
group on Ye that respects Ee and let Gc denote the maximal permutatic
group on Yc that respects EC and induces orientation-preserving
maps on the corners. In more concrete terms Ge {resp. Gc} represents
the edge (resp. corner) configurations that can be obtained by -
dumping and reassembling the edge (resp. corner) cubelets. In any
case, it is clear that G = Ge b Gc.

- Sym(xe) .

There are natural surjections Gc -+ Sym(Xc}, Ge

In concrete terms this just means that dump processes can be

viewed as permuting the cubelets without caring about the action
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on facelets. We can now describe the first "non-obvious”
constraint satisfied by reachable configurations. Iet g denote
the image of an element g of G, {resp. Ge) in Sym(X.) {(resp. Sym(xelj

and let sgn(s) € {+1} denote the parity of a permutation s.

PARITY-LAW: If g = (g_.,g,) € G, * G, = 6 lies in the subgroup H
of reachable configurations then sgn(&é) = sgn@'e}° In other words,
the parity of the corner cubelet permutation determined by a

process is equal to the parity of the edge cubelet permutation.

Proof: Any process can be realized as a sequence of

quarter turns. Any guarter .turn simultaneously does a 4-cycle

on the 12 edge cubelets and a 4-cycle on the 8 corner cubelets

since the 4 corners and edges on the face being turned are permuted
cyclically. 4-cycles are odd permutations so the corner and edge
permutations can be odd or even; however the parity of these two
permutations must be the same at all times (i.e. after an odd
number of quarter turns the parity of the permutation in Sym[xc}==58
must be odd and the parity in Sym(xe) = 512 must alsdabe odéi after

an even number of quarter turns both permutations are even).

This proves the parity constraint.

Remark: It is clear that the parity constraint is true of

exactly 1/2 of the elements of G = GC b Gee

Let H_ (resp. He) be the prejection of H onto G, {resp. Ge).

Thus Hc corresponds to the reachable configurations of corner
cubelets and H, corresponds to reachable configurations of edge
cubelets. There are two more “non-obvious®™ constraints on H;

_they concern the "twists" or orientations of the cubelets.



Any quarter turn moves 8 edge facelets. In fact a quarter
turn is a product of two disjoint 4-cycles in Sym(Ye}. Since
this is an even permutation it follows that He(:;Ge(1 Alt(Ye),
i.e. that the permutation of the edge facelets is always even.
It is easy to check that this is egquivalent to the following

constraint:

EDGE-TWIST LAW: If y  is the canonical character on G {see the

previous section) then He is contained in the kernel of Xe*

Proof: Let g be a fixed quarter turn. Choose a numbering

S Xe x f'sé that xe(g) is obviously equal to 1 (e.g. by giving
all facelets lying on the féce being turned the number 1}.
Proposition 1 says that the value of the canonical character is
independent of the choice of numberings. Hence the value of the

canonical character on any move or precess is 1.

Remark: Choose a numbering. In an arbitrary configuration say
that an edge cubelet is flipped if its facelet with number 1 is
in the number 2 facelet position of its edge cubicle (i.e the
number 2 facelet position of the edge cubelet in that cubiecle in
the solved configuration). The above law says that in any

reachable configuration the number of flipped edges is even.

Finally we come to the corners. From section 1 we know

that Gc = ABq’Sym(xc) and that there is a canonical characterxr

xc:Gc > Aa.

CORNER-TWIST LAW: H, is contained in the kernel of Xe*

Proof: As above choose an obvious numbering (consistent with the

orientations) so that a given quarter turn is trivially in the

kernel of Xe* The law then follows from Proposition 1.
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Remarks:

1) This law also follows trivially from the fact that an element

of order 4 must be in the kernel of any map to a group of order

3.

2) If all orientations are reversed (i.e. "clockwise®” is replaced
by “counterclockwise" above) then by remark 3) at the end of the
preceding section the kernel of the canonical character is unchanged
3) As for edges, this constraint can-be phrased in terms of twists
on the corner cubelets. For each corner cubelet x in an afibtrary
configuration let txez{D, 1, 2} be the number of clockwise twists
of the cubelet that are necessary to align its facelet numbers with
the facelet numbers of the cubelet that would be there in the
solved configuration. The corner—-twist law says that the sum of
all t, is divisible by 3 in any reachable confiquration. One
explicit way to specify enough of a numbering to compute this is

to first choose a pair of colors on opposite faces. These will be
called dominant (or chief) colors. Each corner cubelet contains
exactly one dominant facelet. At each corner in an arbitrary
configuration count the number of clockwise twists necessary to
bring the dominant color into the facelet position of the dominant
color in the solved configuaration (this is easy to see by using
the center colors as a reference}. The sum of these 8 twists should
be divisible by 3. Thus you can find out whether the corners of
your Cube have been tampered with without actually having to

solve the Cube (though for some people the latter method would be

faster). A similar procedure exists for verifying the edge-twist

law {e.g. [4] or [15]).



3. The group H. The results of the previous section show that

the group H, whose elements are in one-to-one correspondence

with reachable configurations, is contained in an explicit

subgroup of the group G of all configurations; In fact it is

not hard to use a solution algorithm to show that H is exactly
equal to this subgroup. A ?areful éxaminétion of any of the known
solution algorithms will show that they describe how to take any
configuration that satisfies the threg copstraints of the previous
section and to apply a process to obéain the.solved configuration.
By applying this backwards we see that any configuration satisfying

the three constraints is reachable. Thus

= {(g_,9.): sgn(g)) = sgnlg ), X (g} =1, X.(9.) = 1} .

The goal of this section is to give a proof of this that
does not rely on a solution alcorithm. Instead we will use some
results from group theory. The astute réader will observg that the
existence of a solution algorithm, albeit an extremely inefficient

one, is implicit in the proof of this result.

Theorem 1l: The natural projections nC:Hc -+ Sym(xc), cxe:He + Sym(X

‘

are surjective.

Remark: Thus any permutation of the 8 corners can be realized by
a suitable process; similarly for the edges. Of course the parity-

law says that they can not necessarily be realized simultaneously.

Proof 1: In diagram 1 we give a process. It transposes adjacent
corners. It is easy to check that by suitably transposing adjacent
corners any two corners can be transposed. Since Sym(xc)== 58 is
generated by transpositions it follows that uC(HC) = Sym(Xc) as
claimed. (Recall that the effect of the map a, is to "forget"”

the corner orientation; thus in this proof we are merely concerned

with the positions of the corner cubelets and not their orientation



within a cubicle.)
The process in diagram 1 gives a transposition of adjacent

edges so the same proof works for the edges.

Proof 2: This proof uses a much deeper result on permutation groups
but it has the virtue of applying without change to the
n-cube. -

First note thatc&JHc) is generated by 4-cycles. It is easy
to check that the image is doubly transitive. {by showing, for
instance, how to put'aribtrgry corners into diagonally oppﬁsite
corner cubicles) and hence primitive. A theorem of Jordan and
Marggraff (see [10] or [égk'says that any primitive permutation
group on n objects that contains a k-cycle for k > 1 is n-k+l
transitive. Hence ac(Hc) is 5-transitive. Any permutation group
on n objects that is m-transitive for m > n/2 contains the
alternating group. Bence ac(Hc) = Sym(Xc)- The proof for the

edges is the same.

Now let K., be the kernel of a B, =+ Sym(xc) and let Kq
be the kernel of a tH, o+ Sym(Xe). In order to obtain the
structure of the groups H_, and He {(and then EB) we must describe
these kernel groups.

In concrete terms (i.e. after the corners and edges have
been numbered) we can think of K, as a "twist-vector"” consisting-
of an 8-tuple with components from {0,1,2} and K, as a 12-tuple

with components from {0,1} . In each case the i-th component

represents the twist of the cubelet in the i-th cubicle.



Note that s§_ = Sym(xc) acts on {EZ/B?Z)B and that Kc must

8
be preserved under this action. Indeed, if x ¢ Kc then the
conjugate of x by g ¢ Hc is given by permuting the 8-components

of x by C!c[g}. A similar statement is true for Ke'

Proposition 2: 1If p is a Prime and K{:.uz/pﬂ}n is a subgroup

that is invariant under the action of Sr;, and if K contains a
vector with 2 unegual components, then K contains the subgroup of
order p™ 1 consisting of those vectors x = (%3, — » x_) whose

component sum X) e s X iz 0 mod p.

Proof: If x is such a vector let x' be the vector obtained by
transposing the unegual compc;nents, Then x’ € K by the assumption
on K. The vector x-x"§ XK has 0 in all but 2 components. By
adding this vector to itself a suitable number of times one obtains
a vector with nonzero components egual to 1 and -1 {using the fact
that p is a prime). This vector and its permutations clearly
generate the indicated subgroup; indeed we can obtain any Besired

values in the first n-1 components. This finishes the proof.

Theorem 2: With the identifications above,

0 mod 3 }

1

K {(xi) = (22/323)8 : Exi

Cc

I

It

K {(x;) e (zf27)12: Ix, 0mod 2 } .

e

Proof: By the corner-twist and edge-twist laws we know that Kc and
Ke must be proper subgroups of (22/’3&)8 and {E/ZZZ)lz. If we sqguare
the process in Diagram 1 we obtain an element that fixes the corner

and edge positions. Hence we get elements of the kernel groups Kc



and Ke; by inspection they have two unequal components. The

theorem then follows from the preceding Proposition.

Since K, is of index 3 in ﬁmfsz)a it follows that H, is
of index 3 in Gc; Since the canonical character X, .is of order
3 its kernel is of index 3 and we-ccnclude that Hﬁ = ker(xc).
For similar reasons H, = ker(xe}g

In concrete terms (i.e. after choosing numberings) we have

a diagram

6 -+ K, - B, > sym(x) > 1

‘N | {

0 -+ (z/32)% - (m/3myNvs, - sg ~ 1

in which K, and B, have index 3 in the corresponding groups on
the bottom row. There is a similar diagram for H,.

The group H generated by all processes is a subgroup of the
direct product Hc" He; it projects surjectively onto either
component. There is a standard classification theorem for
such subgroups of direct products (e.g. [6], p. 63): any subgroup

of G, % G, that projects surjectively onto the components must be

1 2
of the form

{(91;92) B fligij = fzﬁgz)}

where fi:Gi > f- are surjective homomorphisms onto a common
group T. Thus subgroups of a direct product are determined by
isomorphic quotient groups of &, and G, -

From the structure of H and Ee we see that the only

_ possible nontrivial isomorphic qubtient of H_ and H_ is {il}>

v




the corresponding subgroup is
{(9.09.): 9 e B, g e H,, sgn(g)) = sgn(g )} .

Since the parity-law tells us that H is contained inside
this group it follows that H must be egual to this group.

We summarize the content of tﬁese fesults.
Theorem 3: The group G corresponding to all configurations is

The

12°

G = Gc x Ge where Gc = (Z/322) '\'Saﬁ Ge = (@/ZZ) 4 S

group H corresponding to feachable configurations is
H = {(gcrge)z Xc(gc) =1, Xe(ge) =1, Sgnfgc) = Sgn(ge)}
where p and Xe are the canonical characters on the respective

wreath products.

Remark: The subgroup Hc = ker(xe) is the unigue subgroup of

(Z/32Z) v5, of index 3. However, there is a subgroup of

8
02/22)'b512 that is of index 2, . surjects onto 512, has
Ke as its kernel, and is not the kernel of Xe* Namely,
in
{(x,s) e (B/2%Z) V85t {(-1) = sgnis})} -

4. A more general geometric group. The group of the 3-cube

_-_

could be regarded as a transformation group on the points of

R3. It is generated by applying rigid motions to a half-space

determined by a hyperplane. In this section we extend this idea
to a much more general context; this seems to encompass all known

generalizations of the Magic Cube.

A hyperplane in B" is a translate of an n-l-dimensiocnal

vector subspace; an arrangement {[2], [ 1) is a finite set of

hfperplanes in B". Let I be an arrangement in " and assume that



for each h € H we are given a group Eh of orientation-
preserving rigid motions of B whose restriction to h is an
orientation-preserving rigid motion of the hyperplane h. We
will also assume that the other hyperplanes in £ are permuted

among themselves by the elements of Eps o, g

g(h') e £ for each g ¢ Ege B e T .

In the case corresponding to the Magic Cube in 13 we would have
6 hyperplanes (two no;mal to each coo;dinéte éxis) and the group
E, would be the cyclic group of order 4 generated by 90° rotations
around a suitable normal vector to the plane h.

Any hyperplane h in &"” splits B" into two half-spaces; we
aribtrarily label the open half-spaces h* and 17 so that there is

a disjoint decomposition
® = ntU ny n :
If her and g e Eh then since g, and its restriction to h, are

orientation-preserving we have

gtht)y = nt, o) = gy,

We use this fact to define permutations g+ and g of the

points of ®r" by
gx if x ¢ h¥

+
g—(x) = ol
X ifxeh R s =

Thus giS:Sym(Bf’) moves an open half-space.
Now we let H = H(E,{Eh}! be the subgroup of Sym{nfﬁ that is

generated by all of the g+ and gﬁ as g ranges over all Eh' hel .

The fundamental problem for any I and {Eh} is to describe this

group.



The group H is finite. Indeed, the hyperplanes in I
partition R" into a finite number of cells that are permuted
by H. Since each of these cells has only finitely many
symmetries it follows that H must be a finite group. In the
case of the 6 hyerplanes in ® the group H is bigger than
the group obtained in the previous section. The group H would
be the semidirect product of the "supergroup® ([151, [17]) by
the group of order 24 of symmetries of a cube. The group in
the previous section is a quotient of the supergroup by aﬂ
abelian group that corresponds to taking the rotation of the
center pieces into account in describing a configuration. The
semidirect product with the symmetry group of the cube corresponds
to taking into account the position of the cube in space.

One general strategy for describing H that works in many
cases is to judiciously choose a finite set of points in i
(analogous to facelets) on which H acts faithfully. One can
then hope to partition the points into their H-orbits and then
apply the ideas of section 1. In all cases that we have considered
the groups are essentially subgroups of wreath products when
acting on the various orbits, and the canonical character plays

a prominent role.

5. The n-cube. in order to focus on an interesting case in
which we can completely describe the group H we will devote the
rest of this paper to the n-dimensional generalization of the
Magic Cube. This section contains some preliminary results on

the group of symmetries of the n-cube.
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Let C, = {(xj5)e r" : -1 < ¥X; < 1 for all i} be the
n-cube centered at the origin in n-space. Let E(Cn) denote the

group of symmetries of C, - the group of rigid motions g of ="
such that g(Cn) = C - From the first section we know that

E(Cn) = #1 ~ 8 . The matrices of the orthogcogonal transformations
in E(Cn) are monomial matrices whose néhzero entries are +1.

There are 4 homomorphisms from E(Cn) to (41} : the trivial
map, the determinant mapping deg{g)}, the canonical character y(g)
of the wreath product, and the map féking g to sgn(g) where
g e Sn is the underiying permutation. The product of any two of
the nontrivial characters is equal to the third. By using the
semidirect product representation of the wreath product it can
be checked that the commutator subgroup {{+1} . S, }° is the group
of matrices with an even number of -1's and whose underlying
permutation is even. Since this group is of index 4 it follows
that the 4 maps above are the only one-dimensional characters of
E(Cn) (i.e. the only homomorphisms E(C)) =~ E*).

If 0 <d <n then a d-dimensional face of C, is a set of
vectors which have n-d fixed components each having the value 1
or -1, and d components that range over all values between -1 and
1. Since there are (3) ways to partition the coordinates into

n-d

two classes and 2 ways to choose the values of the fixed

coordinates it follows that there are

.. o0y ah—d

d-dimensional faces of Cn'



Let Xd denote the set of d-dimensional faces and E(Cn)
denote the group of symmetr%;es of C,- The E(Cn) acts on the
d-dimensional faces so that we get a permmtation representation

E(C) +  Sym(Xy) -

The primary result of this section is the determination of the
parity of this action. If g£:E€Cn} iet sgn(ng dencte the

parity of the image of g in Sym{X,) = sNd -

Proposition 3: sgh(gn) =1

sgn(gnml) x {g)

i

sgn(g__,) = sgn(qg)

sgn(gd) =1 for k <€ n-2 .

Proof: The first result is trivial since there is only one

n-dimensional face.

Define two elements of E{Cn) by

. Transpositions generate Sn sc it is clear that a and b and their
conjugates generate E(Cn]. Bence for the rest of the proposition
it suffices to compute sgn(aa) and sgn{bd)= To simplify the )
language we will identify Xy with the set of midpoint wvectors

of the d-dimensional faces.

Consider 4 = n~1. The midpoint vectors are te; where the

e, are the standard basis vectors.  Both a and b fix te; for i > 2.
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Matrix multiplication show that

a(+e ) = ey a(iez} te

1

2
b(+e,) = +e, , b{te,) = te; .

Hence a induces an'odd permutation on the midpoint veestors {and
hence on the faces) and b induces aﬁ even permutation. Since
the canonical character is the product of the nonzero entries of
a matrix, x{a) = -1 and x{b} = 1. Thus sgn(gnﬁl} = yx{g) arnd the
second statement of the proposition is proved.

ﬁow consider d = n-2. The midpoint vectors are the vectors
eij(x,y) which have i-th coordinate equal to xe {+1} and j-th
coordinate equal to ye {+1} . We take i ¥ j; there are 4{;) =N__,
such vectors. On the 4 vectors elzfil,il) it is easy to check
that a induces an even permutation and b induces an odd permutation.
On the rest of the vectors it is easy to pair up transpositiéns;
for instance a transposes el3(1,l} and 913{~1,1) and it transposes

{(1,-1) and e,,{(-1,-1). Hence sgn(an_z} = 1 and sgn(bn_z) = =1,

€13 13
Since the character sgn(g) has the same property the third assertion
of the proposition is proved.

Finally, consider d <n-2. The midpoint vectors all have
more than 2 nonzero coordinates. It is easy to see that if a or
b transpose two vectors u and v then they also transpose the
vectors u' and v' where the signs of (say} the 3-rd components of

u and u'" {(resp. v and v') are opposite. Hence a and b give an

even number of transpositions and the proposition is proved.

6. The group of the n-cube. BAs above let C  be the n-cube and

¥ . the set of d-dimensional faces {called d-faces for short) of

d

C,- When convenient we will identify d-faces with their midpoint




szG—

vectors. An n-l-face is called a facet; the midpoint vector
of a facet is of the form te,. If v is a facet and % is a d-face
then xC y is eguivalent to saying that the midpoint vector of y
can be obtained from the midpoint vector of = by setting all but
one of the coordinates egqual to 0. N
As in the 3-dimensional case we want to construct a
-transformation group on ®" arising from 2Zn hyperplanes, each
orthogonal to a standard basis vectog, This_arrangement of
hyperplanes divides C_ into 3" subcubes. Each "side” of c,
n—1

consists of 3 subcubes; the generators of our group will

move these 3n-1 cubes as a block by a symmetry that is determined
by an n-l1-dimensional orientation-preserving symmetry of the
corresponding facet. 1In oxder to have the group follow as

closely as possible along the lines of the 3-cube we will ignore
tﬁe movements of the facets; this corresponds to taking a guotient

of the group defined in the previous section.

For 0 < d < n-1 let

Yo = {(y,x): y is a facet, x is a d-face, xC vy} .
n-2

We will call the elements of ¥; the d-facelets. Let ¥= U ¥q-
a=0

For 0 < d < n-1 let Gy be the maximal permutation group
on Y that preserves the equivalence relation "has the same
second component”. For d = 0 we orient the n O-facelets with
a given O-face (vertex) x as second component by saying that a
numbering of the facelets (yi,x) is positive if the determinant
of the matrix whose columns are the ¥ in order is equal to +l.
Gy is the maximal subgroup of Sym(yoi that presexrves the relation

has the same second component”™ and induces a orientation-preserving

mappings on the facelets lying over a given vertex.




These definitions are the exact analogue of the
corresponding definitions for the 3-cube. Indeed, each “facelet
on the Magic Cube resides on a given O0-face (corner) or l-face
(edge) of the cube and it has a color corresponding to one of
the 6 facets. On the n-cube there are 2q_facets (colors).

In the case of the 3-cube the generating moves are the
éyclic groups of order 4 generated by guarter turns around the

3

coordinate axes. These symmetries are extensions to R of the

orientation-preserving symmetries of the sides (which are 2-cubes).

For each facet y of Cn let E& denote the group of orientation-

preserving rigid motions of the facet y. Since the facets of the

n-cube Cn are n-l-cubes it follows that EY -« E(C )0. where

0

n-1
E(Cn-l’ denotes the subgroup of index 2 of orientation-preserving
symmetries (whose determinant is equal to 1). A rigid motion g of
the hyperplane spanned by y extends in a unigue way to an orientation-
preserving rigid motion, which we will also denote g, of r" .
Any vector normal to the hyperplane is fixed.

For each facet Yo the group Ey acts in a natural way on

o

the collection of all facelets: if g ¢ E, therdefine g € Sym({Y)
o

by
; {(gy.gx) if xC vy,

gly,x) =
{y.,x) otherwise.

In concrete terms we can write (the midpoint wvectors of)y and x -
and let a matrix g act on them by matrix multiplication; the matrix
g is obtained from an n-1 by n-1 monomial matrix in E(Cn_l) by
adding an i-th row and i-th column equal to e; if y = %e;. A little
thought should persuade you that this is the exact generalization
of-the generating moves on the usual 3-cube.

Let H be the subgroup‘of Sym(Y) that is generated by the §

as g ranges over all E_ where y is one of the 2n facets. The

b 4
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n-2
group H is contained in the group G = 1 Gd of all
d=0
"configurations” (in the case of orientations on the vertices

X, this will be spelled out in detail in the'.course of the next
theorem) . Our central goal is to describe B explicitly as a
subgroup of G. K ‘

Each d-face x is contained in n-d different facets y.
Hence there are n-d facelets whose second component is x. We
can choose a numbering Y, = X3 X n-d and find that for & > 0
: ;

= S ~ Sym(xd) and that Gy = An u 5ym(x0). We let Xg

d n-d
denote the corresponding canonical character. For each gg Gy
we let Ea denote the underlying permutation in Sym(xd).

The "reachable configurations®™ satisfy constraints described

in the following thecrem.

n-2
Theorem 4: Let g = (gd) E G = n G
d=0

q - If g is in H then _

sgn(gh_z) = sgn(§£“3)

I A

sgn(Ea) = for 0 < d < n-3

xd(gd} = 1 for ® < d < n-1 .,

Remark: For n = 3 these are exactly the constraints in section 2.

For n = 4 they can also be found in [7].

Proof: It suffices to verify these conditions for the

generators g. Fix a facet Ys and let g be a symmetry in EYO,
Let g4 denote the projection of g onto Gg-

The group Eyoz E(CD}O of orientation-preserving symmetries
of the n-l-cube is the kernel of the character det({(). By



Proposition 3 the character sgn(g) is equal to the canonical
character x(g) on the kernel of det{g). The parity of §a on
the d-faces X3 is determined by that result (since 93 fixes the

d-faces not contained in Y, and y_ is an n-l-cube):
sgn(g__,) = sgn(g__4) = xig)

for 0 < d < n-3 .

o

sgn(gy)
This proves the first two constraints.

Suppose that 4 > 0. For each é—face x let [x] denote the
set of facelets whose second component is x; choose numberings
fx:[x] + n-d for each x. . The value of the canonical character
Xgq on 94 is the class of

-1

I f og ,of
xE:Xd s¥ ~d TxX

in {#1} =s__4/A ., where s = g e Sym(X,).

By the definition of g we can ignore terms in the above
product corre5pondiﬁ§ to d-faces x that are not contained in Y:-
If x is a d-face in Y, let x' denote the "antipodal®™ face in S
its midpoint vector is obtained from the midpoint vector of x by
negatint all components except the i-th if (the midpoint vector of)
y is te;. By Proposition 1 we are free to choose the numberings
as we wish. Choose the numbering at x tco be the ®"same” as at x':
fx(y,x) = fx,(y',x'). Since g4 is induced by a linear map we -
have gd(y)' = gd(y'). It follows that the term at x in the
above product is the same as the term at x'. Hence xd(gd) = 1
as claimed.

For d = 0 the canonical character is automatically trivial

for n > 4. For n = 3 and n = 4 the groups Ey are generated by
o
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elements of order 4 and the image of the canonical character
is in a group of order 3 since A3/A§ = Adfhé = A3. Hence

Xofgo) = 1 and the theorem is proved.

Remark: The order of the subgroup of G "that satisfies these
constraints is
n-2 Nd

I N_!(n-d)! :
a=o0 ¢ S

1
N
2n-4.,"0 e
2 2 [An.An]

For n = 4 this is roughly 1.8 x 10120. If Ideal Toy ever gets
around to marketing this puzzle perhaps it will contain fat

least one trillion positions.”

Finally, we must prove that H is actually egual to the

subgroup of G satisfying these constraints.

Theorem 5: The group H corresponding to "reachable configurations“
is
H = {(gd)E:G: sgn(g__,) = sgnig__.}., sgn(gy) = 1 for 4 < n-3,
xd(gd) =1 for 0 <d < n-1 <

The index of H in G is 22n—4

[Anzﬁéj.

Proof: For each 4 let Hg denote the projection of B onto Gd“

We will follow the pattern of the n = 3 case and first prove that
the projection of Hy onto Symfxd) is as big as claimed, then prove

that Hy is as big as claimed, and finally prove that H is as big

a subgroup of Hy as claimed.
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DIAGRAM 1

Let A+(resp. A”) denote a 90° clockwise (resp. counterclockwise)
turn of the face A in the diagram; gimilarly for B and C.
Let [x,y] = xyx"ly'l denote the usual commutator.

MASTER PROCESS: m = amhciat.cr .

We follow our conventions of reading from right to left. In the
more usual (in the cube literature) left to right notation of
Singmaster (with A = F = front, B = U = up, C = R = right) this
process is

M = R F RFRU R UF . y
In the corner configuration group Ay w6 the process M gives
an element (f,s) where s is the permutation (12) with the nunbering
of the cubelets given in the diagram and £:8 -+ A5 is a specific
=iwist” Ffunction. The square of M is {g,1) where g is the twist
function whose value at corners 1, 2, and 4 is a specific 3-cycle,
and whose value at the other corners is the identity. In the edge
configuration group 5, ™ Sy2 the process M gives (f,s) where s = (1
The square of M gives (g,1) where g is nontrivial only at edges
1 and 4.




